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long tails which may not be distinguishable from 
background scattering due to other sources. 

Our estimates of error from this source are admit- 
tedly very rough and subjective and are intended only 
as indications of the possible magnitudes of the errors 
and their variation with the relevant parameters. The 
actual errors of measurement will depend on a number 
of factors. The curves of Fig. 2 will be convoluted in 
practice with an instrumental measuring function and a 
mosaic spread function which will vary in width and 
form with the distance of the reciprocal-lattice point 
from the origin and also with the angle between the h 
vector and the repetition vector R. The estimates of 
background will depend on the measuring routine used. 

In the reciprocal-space representation of Fig. 1 (c) it 
is seen that for our simple model the value of h. A is 
zero on one line through the origin and varies 
systematically with distance from this line. Since from 
Fig. 4 it is seen that there is only a weak dependence of 
the error on h. A, the effect will be to produce only a 
small systematic variation of measured intensity. 
However, the variation of the form and size of the 
measuring volume in reciprocal space (Fig. 3) will tend 
to give a larger systematic error with position of the 
reciprocal-lattice point since the varying range of 
measurement in terms of 2heR will give an error 
ranging from almost zero to the maximum indicated in 
Fig. 4. 

In general, the errors in relative intensities will be less 
if F 1 and F 2 are of the same sign and differ by less than 
50%. It is for the occasional pairs of reflections for 
which F 1 and F 2 have opposite sign that the relatively 
large errors may be produced. 

It is suggested that when microtwinning is indicated 
by streaking in X-ray diffraction or electron diffraction 
patterns or by contrast effects in high-resolution 
electron micrographs (Wenk, 1976) estimates may be 
made of the possible errors on the basis of the above 
considerations in relation to the techniques used for 
measurement of X-ray diffraction intensities. In this 
way improved accuracy may be obtained in structure 
analyses when microtwinning is present. 

The authors are grateful to Drs Gabrielle and J. D. 
H. Donnay for stimulating discussions in the initiation 
of this project and in review of the manuscript, and also 
to Dr R. Von Dreele for advice on diffractometer 
measuring techniques. The work was supported by 
NSF grant DMR 76-06108. 
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Minimizing the Variance in Integrals and Derivatives of the Electron Density 
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A method for minimizing the variance in integrals and derivatives of electron densities by filtering the 
scattering amplitudes is established. The optimum filters for the density and its integrals and derivatives are 
shown to be the same. Calculations with experimental data show that the variance of integrated densities is 
not very sensitive to the shape of the region of integration, indicating that good estimates may be made using 
simple shapes. A very convenient expression is given for the variance of the integral over a sphere. Coppens 
& Hamilton [Acta Cryst. (1968), B24, 925-929] have shown that accurate estimates of integrated densities 
are possible. Filtering can further improve these estimates. By contrast, good estimates of derivatives of the 
electron density remain unlikely, even using filtered diffraction data. 

Introduction 

In quantitative studies of the structure of materials by 
the analysis of diffraction data it is often of interest to 

calculate gradients and volume integrals of the electron 
density. When the density is evaluated by Fourier syn- 
thesis of the structure factors, F(S) (S is the reciprocal- 
lattice vector), difficulties arise in the treatment of the 



744 MINIMIZING THE VARIANCE IN INTEGRALS OF THE ELECTRON DENSITY 

experimental errors. The variance in the density is the 
sum over all reflections of the variance in the structure 
factor for each reflection (see, for example, 
Cruickshank, 1949). Ideally, the Fourier and variance 
summations extend over the infinite number of 
reciprocal-lattice vectors. The smoothness of the time- 
average electron density guarantees that F(S) ~ 0 as 
I SI ~ oo, so that the Fourier summation converges in 
principle. 

In practice there is always a non-zero uncertainty in 
the structure factor measurement due to background, 
even when the true value of F(S) approaches zero. Even 
in this limit there will be errors in the measured 
structure factors which produce 'noise' in the calculated 
density distribution. It is apparent also that the 
variance summation may diverge. Estimates of the 
variance made by terminating the summation at the 
limit of the experimental data set will depend on the 
extent of the data set, which is somewhat arbitrary. 

Essentially the same problem arises in estimating the 
variance in integrals and derivatives of the density. The 
situation is less serious for integrated densities, but 
worse for derivatives. Coppens & Hamilton (1968) 
have shown that each term in the variance summation 
for an integral over a parallelepiped region is multi- 
plied by a function of S. This function is the square of 

D(S) = fvexp (--iS. r)dr (1) 

where V is the volume of the paraUelepiped. D(S) is the 
Fourier transform of a function which has a value of 
one inside the parallelpiped and zero elsewhere. D(S) is 
peaked around the origin of reciprocal space. The 
larger the volume V, the more rapidly D(S) approaches 
zero away from the origin. The effect of this factor is to 
reduce the contribution of high-order terms to the 
variance. Normally, the predominantly weak high- 
order reflections are relatively less accurately measured 
than the strong reflections which occur at low angles. 
Coppens & Hamilton (1968) have pointed out that it is 
therefore possible to measure an integrated density 
relatively more accurately than the density itself. For a 
large enough volume the series-termination effect will 
be negligible. If the volume of integration is small 
enough for the value of D(S) to be appreciable over the 
range of the data, however, the termination effect may 
still be serious. 

Minimum-variance analysis 

where M is a function to be optimized, F e is an esti- 
mated structure factor (complex) and V is the unit-cell 
volume. The summation extends over all observed 
reflections. 

A quantity QM derived from PM(r) by integration or 
differentiation may be written as 

1 
aM= ~" E MFeD(S). (3) 

For an integral, D(S) is given by (1) where V may now 
be a general volume in the unit cell, not necessarily a 
parallelepiped. If QM is a derivative of the density, D(S) 
will be obtained by applying the differential operator to 
exp ( - iS .  r). 

We seek the function M = M which minimizes a 
residual with the form of an estimate of the mean 
variance of QM in the unit cell 

1 
(a2(QM))r = ~ f ([QM-QI2)dr. (4) 

Here Q is the true value of the quantity being 
considered and the expectation brackets in the right- 
hand side of the equation indicate an average over an 
ensemble of observations of Q. 

Following the argument of Davis, Maslen & 
Varghese (1978) we find that the optimum form for M 
is 

(Fe. FD(S)D(--S)) (Fe .F )  

M= (Fe'FeD(S)D(--S)) (Fe" Fe) (5) 

where F is the true value of the structure factor 
estimated by Fe. 

This is the same as the optimum filter for the density 
itself. The useful properties of M may be readily appre- 
ciated if the observations F~ are assumed to be 
symmetrically distributed around F. For a strong 
reflection which is measured with small relative error, 
(F  e. F)  _ (F  e. Fe) so M ~_ 1. For very weak reflections 
(I F I --, 0) which predominate at high scattering angles 
we expect (F  e. F)-- ,  0 while (Fe. Fe) approaches the 
variance in Fe, so that M ~ 0. In this region of the data 
the measured structure factors are essentially all noise. 

In practice, where only one measurement of each 
reflection is available, it may be necessary to replace 
the ensemble averages in (5) with averages over regions 
of reciprocal space, such as small intervals of S -- I SI 
(Davis, Maslen & Varghese, 1978). 

A technique which in principle removes the dependence 
of the variance of the electron density of the data cut- 
off has been proposed by Davis, Maslen & Varghese 
(1978). They define a modulated experimental density 

1 E MFeexp ( - iS . r )  PM(r) = ~. (2) 

Estimate of  the variance 

The essential features of the variance may be illustrated 
by considering the special case of a centrosymmetric 
structure. In this case the structure factors are real 
numbers. With the assumption that F e is sym- 
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metrically distributed around F and with the optimum 
filter function we obtain 

1 
a2(QM) = - ~  Z MD(S) D(--S) a2(Fe) 

1 
+ ~ ~ MD(S)D(S)a2(Fe) 

1 p 
+ -~ ZZ (1-M)(1--M')(Fe)(F~) 

x D(S) D(S'). (6) 

~ '  is a restricted sum over all S' 4: S or - S  and tr2(Fe) 
is the variance of the observation F e. 

Significance of the terms in the variance 

In general, for both integrals and derivatives, D(S) 
contains an imaginary exponential factor which is 
periodic in S and position within the unit cell. The first 
term in (6), therefore, is independent of position while 
the other terms are position dependent. 

The second term is negligible except when the deriva- 
tive or integral is evaluated near a special position in 
the unit cell determined by the crystal symmetry 
(Cruickshank & Rollett, 1953). At these positions it 
may be of similar magnitude to the first term. 

The third term in the variance is closely related to the 
'mean square noise', ([QM- QI]2), where QI is 
evaluated from (3) by putting M = 1 for all reflections. 
The importance of this term will depend strongly on the 
form of D(S). 

It should be kept in mind that any error in the scale 
factor for the structure factors is likely to dominate the 
variance near nuclear positions. 

CuSO4.5H20 , for which neutron diffraction par- 
ameters have been determined by Bacon & Titterton 
(1975). The optimum filter function is given in Davis, 
Maslen & Varghese (1978), and reproduced here in 
Fig. 2(b). M drops to a minimum of 0.317 at the data 
limit, ISI/4n = 1.07/k -1. Variances for integrated 
difference densities have been calculated for spherical 
regions of various radii. The appropriate form of D(S) 
for an integral over a sphere was given by Kobayashi, 
Marumo & Saito (1972). For a sphere of radius R, with 
S = I S I, equation (7) becomes 

a2[QM (sphere)] 

9V2V 2 Y [sin(RS)--RSc°s(RS)] 2 ( R S )  3 = ,..., M a2(Fe). 

(8) 

The results of this calculation, which are plotted in Fig. 
1, show that the integrals are accurately determined. 

As expected, the value of a(QM)/V approaches 
a[APM] = 0.066 e A -3 as the volume V approaches 
zero. When the radius is increased, a(QM)/V decreases 
as the contribution of high-order reflections is reduced. 

Fig. 2(a) is a plot of the weighting function MD(S) 
D(-S) ,  averaged over small intervals of S, for a sphere 
of 0.25/k radius. 

Beyond the data limit the weighting function is small, 
so extending the data set will make little difference to 
the variance of the integral. 

Sensitivity to the shape of the region 

For many interesting volumes of integration it may be 
difficult or impossible to express D(S) in analytic form. 
To test the sensitivity of the variance to the shape of the 
region of integration, variances were also calculated 
from (7) for integrals over parallelepiped regions. The 

Variance in integrated densities 

Because (1 - M) is small for most low-order reflections 
while D(S) is small for the higher-order reflections, the 
third term in (6) will be negligible for an integrated 
density. At a general position in the unit cell the 
variance will be given by the first term only. Thus, for 
the centrosymmetric case 

1 ~ M D ( S ) D ( _ S )  aZ(Fe). a2(QM ) = ~-5 (7) 

Example 

A set of accurate X-ray data has recently been 
collected for copper sulphate pentahydrate 

007 
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Fig. 1. Standard deviation (e/1,-3) of the average difference density 

of copper sulphate pentahydrate for averages taken over spheres 
of various radii. 
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Table 1. Standard deviations for integrals of the 
difference density of copper sulphate pentahydrate 

Region of integration a[Q~a]/V 

Sphere  o f  radius = 0 .25  A 0 . 0 2 8 6  
Paral le lepipeds  o f  same vo lume  as sphere  with 

slides in rat io 1 : I : 1 0 . 0 2 6 5  
1 : 1 : 3  0 . 0 2 6 7  
1 : 1 : 6 0 . 0245  

sides were taken parallel to the crystal axes and the 
expression of Coppens & Hamilton (1968) was used 
for D(S). The parallelepipeds considered all had the 
same volume as a sphere of radius 0.25 ]k, but the sides 
were in differing ratios. The values of the standard 
deviations are listed in Table 1. 

The figures show that the standard deviation is not 
very sensitive to the shape of the region. For compact 
shapes, a good upper limit for the standard deviation of 
the integral is given by the spherical result, equation 
(8). This expression is considerably simpler to evaluate 
than the parallelepiped expression. 

The weighting function MD(S) D(--S) in the first term 
of (6) can be written as 

1 
MD(S) D(--S) ~- -fi M(S2")s (10) 

where S~" has been replaced by its average value 1/3" 
× (S: ' )s  in a small interval of S. This weighting 
function is plotted for the first derivative (n = l) and 
the second derivative (n -- 2) of the copper sulphate 
difference density in Fig. 2(c) and (d). 

It is apparent from the size of the weighting function 
that the estimated variance of the derivatives will be 
much larger than the variance for the density, and its 
integrals. What is more, even though M decreases at 
high angles, the S 2" factor causes the high-order 
reflections to dominate the variance. Termination of the 
data causes the variance to be seriously under- 
estimated. 

In real-space terms, the derivatives are critically 
dependent on the fine structure of the Fourier map of 
the density. These features are heavily affected by 
random errors in the high-angle data. For the copper 
sulphate data no reasonable estimate of even the first 
derivative could be made. 

Variance in derivatives of  the density 

The difficulty in obtaining accurate estimates of deriva- 
tives of electron densities has been pointed out by Price 
& Maslen (1978). This can be appreciated in terms of 
the minimum-variance analysis by considering the 
special case of the nth partial derivative of pM(r) with 
respect to x, say, where r = (x,y,z) and S = (Sx,Sy,S z) 
in some coordinate frame. For this case 

D(S) = (--iSx)" exp (--iS.r). (9) 

O ' O O t ' ~ L  ~ 
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Fig. 2. The weighting function MD(S) D(--S) as a function of S for 
the variance given by equation (7) using copper sulphate data for 
(a) an integral over a sphere of 0.25 A radius, (b) the difference 
density, (c) the first derivative, and (d) the second derivative. 
Note the different vertical scales. 

Conclusion 

Integrated electron densities may be accurately 
estimated from filtered diffraction data. The variance of 
the integrated density is not very sensitive to the shape 
of the region of integration. Approximating the region 
by a sphere of the same volume gives a good upper 
estimate &the  variance which is easy to evaluate. 

Reasonable estimates of derivatives of the difference 
density and their variances could not be obtained for 
copper sulphate pentahydrate, even using filtering 
techniques. 
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